
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

69

Protocol Modeling in Spiking Neural P systems and Petri
nets

Venkata Padmavati Metta
Bhilai Institute of Technology

Kamala Krithivasan
Indian Institute of Technology

Deepak Garg
Thapar University

ABSTRACT
In this paper we present the relation between Spiking Neural P

(SN P) systems and Petri nets by focusing on modeling simplex

stop-and-wait protocol. The SN P system for the protocol is

constructed and also translated it into equivalent Petri net with a

corresponding semantics. It is then observed a direct

correspondence between the Petri net representation of the

proposed model and standard solution based on Petri nets already

present in the literature.

Key words: Petri net, Spiking neural P system, simplex stop-

and-wait protocol, modeling.

1. INTRODUCTION

Membrane computing is an emerging Branch of natural

computing which deals with distributed and parallel computing

devices of a bio-inspired type, which are called membrane

systems, or P systems [9]. Spiking neural P systems are variants

of membrane systems devised based on the observation that

neurons send electrical impulses (also called spikes) along the

axons to other neurons. It is a new model in the area of neural

computation.

An SN P system [4] consists of a set of neurons (membranes)

connected by synapses. The structure is represented as a directed

graph where the directed edges represent the synapses and the

nodes represent the neurons. The system has only a single unit of

information referred to as spike and is represented by symbol a.

The spikes are stored in the neurons. The rules are assigned to

neurons that allow for sending information to other neurons in the

form of electrical impulses (also called spikes), which are

summed up at the target cell; the application of the rules depends

on the contents of the neuron (which, in general case, is described

by regular sets). Within each time unit, the system is transformed

by the rules which are applied in concurrent fashion. The system

is synchronised, but it works sequentially at the level of the

neuron: in every step at most one rule is used in each of the

neurons. As inspired by the biological findings, the cell sending

out spikes may be “closed” for a specific time-period

corresponding to the refractory period of a neuron; during this

refraction period, the neuron is closed for input and cannot fire

token again. Depending on the exact formalisation of the model,

the notion of a successful computation is defined together with its

output. SN P systems are proved as computationally complete

[10]. In addition, many different extensions and modifications of

that basic model have been proposed and studied, such as

consideration of inhibitory astrocytes and decaying spikes [1, 3].

Different variants of P systems are translated into Petri nets to

complement the functional characterisation of their behaviour in

[6, 7]. To depict and simulate the behaviour of an SN P system,

we introduced the translation of some class of SN P systems into

Petri nets. Therefore using the notions and tools already

developed for Petri nets, one can describe the internal process

occurring during a computation in the SN P system.

Petri nets are bipartite directed graphs consisting of places and

transitions. Places represent the objects which indicate the

availability of resources, represented by tokens. Thus places can

be used to represent neurons and spikes can be indicated with

tokens. Transitions are actions which can occur depending upon

the availability of resources and thus can be used to represent

spiking and forgetting rules inside the neurons. It is worth noting

that as far as the rules are concerned, SN P systems are highly

concurrent in nature and Petri nets are successful modeling

paradigm, which allows concurrent systems to be described in a

formal yet graphical and well readable way. Furthermore, Petri

nets allow for computer aided simulation and what is more,

formal analysis of models based on them is also possible.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

70

The relation between SN P systems and Petri nets is emphasized

by focusing on modeling simplex stop-and-wait protocol. The SN

P system for the protocol problem is constructed and also

translated it into equivalent Petri net using the proposed

algorithm. Petri nets are widely used for formal specification,

analysis and verification of protocols. It is then observed a direct

correspondence between the Petri net representation of the

proposed model and standard solution based on Petri nets already

present in the literature.

The paper is organised as follows, the next two sections give the

definitions of SN P system and Petri net. Section 4 gives an

algorithm for translating SN P system into equivalent Petri net

model. In section 5, we present an SN P system for modeling

simplex stop-and-wait protocol and is translated into Petri net

model, which is essentially the same as the standard Petri net

solution illustrated in [8].

1.1 Notation

We recall here few definitions and notations related to formal

languages and automata theory. Σ is a finite set of symbols called

alphabet. A string w over Σ is a sequence of symbols drawn from

Σ. λ denotes the empty string. Σ* is the set of all string over Σ.

Σ* − {λ} is denoted by Σ+. The length of a string w is denoted by

|w|. A language L over Σ is a set of strings over Σ.

Let the alphabet Σ be the set {a1, a2,…, an}. The letter distribution,

φ (w), of a Σ-word w is the n-tuple {N1, · · · , Nn} with Ni the

number of occurrences of ai in w. The Parikh set, φ (L), of an Σ-

language L is {φ (w) | w in L}. A language L in Σ* is said to be

regular if there is a regular expression E over Σ such that L (E)

=L. The regular expressions are defined using the following rules.

(i) λ and each a in Σ are regular expressions. (ii) If E1, E2 are

regular expressions over Σ, then E1+E2, E1E2 and E1
* are regular

expressions over Σ, and (iii) nothing else is a regular expression

over Σ. With each regular expression E, we associate a language L

(E).

When Σ = {a} is a singleton, then the regular expression a∗

denotes the set of all strings formed using a .i.e the set {λ, a, a
2
,

a
3
...}. The positive closure of a, a

+
= a∗ − {λ}. If Σ is a singleton

then Parikh set of the language denoted by regular expression E

over Σ, L(E) is {|w| | w ∈ L(E)}.

2. SPIKING NEURAL P SYSTEM

Mathematically, we represent a spiking neural P system (SN P

system), of degree m ≥ 1, in the form Π = (O, σ1, σ2, σ3,. . . , σm,

syn , i0), where

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, σ2, σ3 ,. . . , σm are neurons, of the form σi
= (ni, Ri) ,

1 ≤ i ≤ m, where

 a) ni ≥ 0 is the initial number of spikes contained by the cell;

b) Ri is a finite set of rules ij associated with neuron σi

of the following two forms:

(1)E /a
r
→a; t, where E is a regular expression over O, r ≥1,

and t ≥0; Number of spikes present in the neuron is

described by the regular expression E, r spikes are

consumed and it produces a spike, which will be sent to

other neurons after t time units

(2) a
s
 →λ, for some s≥1, with the restriction that a

s
/ L(E)

for any rule E /a
r
→a; t of type (1) from Ri.

Number of spikes consumed by the rule ij is denoted as con(ij)

and number of spikes produced is called pro(ij). In standard SN P

systems pro(ij) is either 0 or 1.

3. syn ⊆ { 1, 2, 3, . . . , m} × { 1, 2, 3, . . . , m} with (i, i) not

in syn for 1≤ i ≤m. (synapses among cells);

4. i0 ∈ {1, 2, 3, . . . ,m } indicates the output neuron.

The rules of type E/ar→a;t are spiking rules, and they are

possible only if the neuron contains n spikes such that an in L(E)

and n ≥ r. If E =φ then the rule is applied only if the neuron

contains exactly r spikes. When neuron σi spikes, its spike is

replicated in such a way that one spike is sent to all neurons σj

such that (i, j) ∈ syn, and σj is open at that moment. If t = 0, then

the spikes are emitted immediately, if t = 1, then the spikes are

emitted in the next step and so on. In the case t ≥ 1, if the rule is

used in step d, then in step d, d + 1, d + 2, ..., d + t − 1, the neuron

is closed and it cannot receive new spikes (if a neuron has a

synapse to a closed neuron and sends spikes along it, then the

spikes are lost, biology calls this the refractory period). In step t +

d, the neuron spikes and becomes open again, hence can receive

spikes (which can be used in step t + d + 1). If a neuron σi fires

and either it has no outgoing synapse, or all neurons σj such that

(i, j) ∈ syn are closed, then the spike of neuron σi is lost; the firing

is allowed, it takes place, but results in no new spikes. The rules

of type as →λ are forgetting rules; s spikes are simply removed

(“forgotten”) when applying. Like in the case of spiking rules, the

left hand side of a forgetting rule must “cover” the contents of the

neuron, that is, as→ λ is applied only if the neuron contains

exactly s spikes.

0-delay SN P system is one where the delay in all the rules of the

neurons is zero. Because in this paper we always deal with 0-

delay systems, the delay (d = 0) is never specified in the rules.

Definition 2.1 (Configuration) The configuration of the

0-delay SN P system is described by the numbers C = {n1, n2, . . . ,

nm} representing the number of spikes present in each neuron. The

initial configuration C0 of the system is described by the initial

number of spikes present in each neuron.

A global clock is assumed in SN P system and in each time unit

each neuron which can use a rule should do it (the system is

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

71

synchronized), but the work of the system is sequential locally:

only (at most) one rule is used in each neuron. The rules are used

in the non-deterministic manner, in a maximally parallel way at

the level of the system; in each step, all neurons which can use a

rule of any type, spiking or forgetting, have to evolve, using a

rule.

Definition 2.2 (Vector rule) We define a vector rule v as a

mapping with domain Π such that each v(i) is at most one instance

of rule from R(i) i.e | v(i) | =0 or 1 where 1 ≤ i ≤ m.

A vector rule v is enabled at a configuration C if, for each neuron

σi of Π,

v(i) is either of the form ij: E/a
r
→a if ni ∈ Parikh set of L(E) and

ni ≥ r or v(i) is of the form ij: a
s
→ λ if ni is exactly s. If no rule in

Ri is enabled then v(i) is i0. If a vector rule v is enabled at a

configuration C={n1, n2, . . . , nm
} then C can evolve to C’={n’1,

n’2, . . . , n’m
} such that for every σi in Π: n’I = ni − con(v(i)) +

∑(j,i)∈syn pro(v(j)).

Definition 2.3 (Transition) Using the vector rule, we pass from

one configuration of the system to another configuration; such a

step is called a transition. For two configurations C and C’ of Π

we denote by C ⇒ C’, if there is a direct transition from C to C’ in

Π.

A computation of Π is a finite or infinite sequence of transitions

starting from the initial configuration, and every configuration

appearing in such a sequence is called reachable. Note that the

transition of C is non-deterministic in the sense that there may be

different vector rules applicable to C, as described above.

A computation halts if it reaches a configuration where no rule

can be used. With any computation halting or not we associate a

spike train, a sequence of digits of 0 and 1, with 1 appearing in

position which indicates the steps when the output neuron sends

spikes out of the system. One of the neurons is considered to be

the output neuron, and its spikes are sent to the environment. With

any spike train we can associate various numbers which are

considered as computed by the system. Because of the non-

determinism in using the rules, a given system computes in this

way a set of numbers.

3. PETRI NET

A Petri net is a bipartite graph with two types of nodes, place

nodes represented with circles containing tokens and transition

nodes represented with bars or boxes. The directed arcs

connecting places to transitions and transitions to places may be

labeled with an integer weight, but if unlabelled are assumed to

have a weight equal to 1.

A transition has a certain number of input and output places

representing the preconditions and post conditions of the event

respectively. A transition is enabled if all of its input places have

tokens equal to or greater than the weight of the arc connecting

that place to the transition. A transition without any output place

is called a sink transition. Note that the firing of a sink transition

consumes tokens but does not produce any. Similarly a place

without any output transition is called output place.

Many extensions to the simple Petri net model have been

developed for various modeling and simulation purposes. These

high level Petri nets include coloured Petri nets [5], which allow

tokens to have internal structure, and transitions can have a guard

function to further constrain their enabling.

Timed Petri nets, in which places and/or transitions may be

assigned deterministic/probabilistic time delays [2].

Definition 3.1(Petri net) A Petri net is represented by N= (P, T, A,

W, G), where

P = {P1, P2, P3, . . . , Pm} is a finite, nonempty set of places.

T = {T1, T2, T3, . . . , Tn}is a finite, nonempty set of transitions.

A in (P × T) U (T ×P) is a set of directed arcs which connect

places with transitions and transitions with places.

 W: A→N assigns weight W (f) to elements of f ∈ A denoting the

multiplicity of unary arcs between the connecting nodes.

G: T → {true, false}, the guard function maps each transition Ti

to Boolean expression, which specifies an additional constraint

which must be fulfilled before the transition is enabled.

Definition 3.2 (Marking) A marking (state) assigns to each

place Pi a non negative integer k, we say that place Pi is marked

with k tokens. Pictorially we place k black dots (tokens) in place

Pi. A marking is denoted by M, an m -vector where m is the total

number of places. M0 is the initial marking, the initial number of

tokens in each place Pi
.

The state or marking of Petri net is changed by the occurrence of

transition. Transition Tj is enabled iff its every input place has at

least as many tokens as the weight of the input arcs and satisfies

the guard function. Upon firing the transition Tj removes number

of tokens from each of its input places equal to the weight of the

Figure.1: SN P system for simplex stop-and-wait protocol

a
11: a → a

41: a → a

51: a → a

21:a
2
 → a

Sender Receiver

Buffer

σ2

σ3

σ4

σ5

σ7

σ1

31: a → a

a
61:a2 → a

71: a → a

σ8

σ6

81: a → a

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

72

input arcs and deposits number of tokens into the output places

equal to the weight of output arcs. The pre- and post- of a

transition t ∈ T for all p ∈ P is defined as:

PREN (t)(p) = W (p, t) and POSTN(t)(p) =W (t, p)

Concurrency is also a concept that Petri net systems represent in

an extremely natural way. Two transitions are concurrent at a

given marking if they can be fired at the same time i.e.

simultaneously. An important concept in Petri nets is that of

conflict. Conflict occurs between transitions that are enabled by

the same marking, where the firing of one transition disables the

other. A major feature of net is that they do not define in any way

how and when a given conflict should be resolved, leading to non-

determinism on its behaviour.

Definition 3.3 (Step) A step is a set U of transitions. The pre- and

post-set of places of transition set U is defined as:

PREN(U)= ∑t∈U PREN (t) and

POSTN(U)=∑t∈U POSTN (t)

A step U is enabled in a marking M if M ≥ PREN(U). We denote

this by M [U>. Thus, in order for U to be enabled at M, for each

place p, the number of tokens in p under M should at least be

equal to the total number of tokens that are needed as an input to

U, respecting the weights of the input arcs. Moreover, U is a

maximal step at M if M [U > and there is no transition t such that

M [U + {t}>.

If U is enabled at M, then it can be executed leading to the marking

M0= M − PREN (U) + POSTN(U)

This means that the execution of U consumes from each place p

exactly W (p, t) tokens for each occurrence of a transition t ∈ U

that has p as an input place, and produces in each place p exactly

W (t, p) tokens for each occurrence of a transition t ∈ U with p as

an output place.

If the execution of U leads from M to M’, we write M [U> M’.

Whenever U is a maximal step at M, we will also write M [U>max

M’.

A finite sequence σ = U1· · · Un of non-empty steps is a step

sequence from the initial marking M0 if there are markings M1· · ·

Mn of N satisfying Mi−1[Ui>maxMi for every i ≤ n. Such an σ is also

called a step sequence from M0 to Mn, and Mn itself is called a

reachable marking.

In the same way, we can define step sequences consisting of

maximal steps, and markings reachable through such step

sequences. Together, they define the maximal concurrency

semantics of the Petri net N. In this paper we are considering only

maximal concurrency semantics of the Petri nets.

A computation of a Petri net N is a finite or infinite sequence of

executions starting from the initial marking and every marking

appearing in such a sequence is called reachable. A major strength

of Petri nets is their support for analysis of many properties and

problems associated with concurrent systems such as reachability,

boundedness and liveness. The firing of an enabled transition will

change the token distribution in a net according to the transition. A

sequence of firings will result in a sequence of markings. A

marking Mn is reachable from initial marking M0 if a sequence of

firings that transforms M0 to Mn. The reachability problem for Petri

net is the problem of finding if a marking Mi is reachable from the

initial marking M0.

4. SN P SYSTEMS AND PETRI NETS

In this section, we translate a 0-delay SN P system into a

behaviourally equivalent Petri net. We also translate some class of

Petri nets into equivalent SN P systems.

4.1 SN P System to Petri net
Let Π = (O, σ1, σ2, σ3,. . . , σm, syn , i0) be a spiking neural P

system. Update Π by adding (i0,0) to syn, to represent the

connection between the output neuron and environment. Construct

corresponding

Petri net NΠ = (P, T, A, W, G) with initial marking M0, where the

various components are defined thus:

1. Each neuron σi in an SN P system is represented with a place Pi.

Output place P0 in Petri net corresponds to environment in an SN P

system. So add the set of neuron places {P0, P1, P2, · · · , Pm} to P.

Set M0(Pi)=ni and M0(P0) = 0 where ni is the initial number of

spikes in σi.

2. The arcs between a place to transition and transition to place

represent an axon. The neuron σi spikes using rules ij. For each

neuron σi and each rule ij do, if

a) ij : as → λ, is the forgetting rule of an SN P system. In Petri net,

add a sink transition Tij to T and arc (Pi, Tij) to A with W (Pi, Tij)

=s. Set G (Tij) as true if M (Pi) =s.

b) ij : E / ar →a. Create and add a transition Tij toT and (Pi, Tij) to

A. Set W (Pi, Tij) = r. For each (i, k) ∈ syn add an arc (Tij, Pk) to A

with W (Tij, Pk) = 1 and set G(Tij)=true if M (Pi) is a member of

Parikh set of L(E).

The initial marking of the Petri net NΠ corresponds to initial

configuration of an SN P system C0. To establish the behavioural

equivalence of Π and NΠ, we first capture the very tight

correspondence between configurations and markings and between

enabling of vector rule and steps.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

73

Definition 4.1 For each marking M of NΠ the configuration CM is

such that for every neuron σi for Π, we have M(Pi)=ni
.

For each step of transitions U of NΠ, there is vector rule vU such

that for every neuron σi ∈ Π and rule v(i) ∈ vU , if t in U is a

transition of the form

1. Tij with W (Pi, Tij)
 =s with no out going arcs then ∃ a rule v(i) of

the form ij : a
s
→ λ.

2. Tij with input arc from Pi with outgoing arcs then ∃ a spiking

rule v(i) of the form ij : E/a
r
 → a.

If U has no transition beginning with subscript I then v (i) = i0.

Theorem 1.1 Let M is a reachable marking of NΠ, for any

execution

 1. If M [U>M' then CM⇒ CM’

2. If CM ⇒C’ then there is a step U such that v = vU , M [U>M’

and CM’⇒ C’.

Proof: Let CM be a configuration of Π.

(1) We first show that vU is enabled at CM. As U is enabled at M,

by the definition 4.1, for every t ∈ U, ∃ a rule v(i) ∈ vU such that

v(i) is enabled at CM’. Hence there is C such that CM⇒C. Moreover

C = CM’ follows from the algorithm and definition 4.1.

(2) Let σi be a neuron such that v(i) is a rule of any one of the four

forms (a) ij: E / a
r
→a; t then the number of spikes in the neuron σi,

ni ≥ r and ni ∈ L(E). That is the rule is enabled. (b) ij: a
s
→λ then

by the definition 4.1, ∃ a sink transition Tij in Ui with W (Pi,Tij
)=s.

(c) is : Neuron σi spikes and sends a spike to its neighbouring

neurons. (d) i0: No rule can be used. By the definition 4.1, ∃ a

transition Ui ∈ U for v(i). It therefore follows that U is the set of

transitions of type Ui where 1 ≤ i ≤ n, if v(i) = i0 then Ui=λ. Hence

there is M’ such that M [U>M’. Moreover C’=CM’ follows from

the algorithm and definition 4.1.

4.2 Petri net to SN P system

Here we prove that every non-timed basic Petri net N = (P, T, A,

W, P0) with |I(P0)| = 1 (i.e. number of input transitions for place

P0=1) and every transition t ∈T such that |I(t)| = 1 and W(t, Pj)
= 1.

N should also has the property that for every ti,
 tj ∈ T if I(ti)

=I(tj)

then O(ti)
=O(tj)

. N is converted into behaviourally equivalent

Spiking Neural P system Π=(O, σ1, σ2, σ3,. . . , σm, syn, i0) having

no timed rules using the following procedure.

1. Set O= {a}. We have environment in Π for place P0. Let Pk is

the only place connected to P0. Set i0 as k

2. For each place Pi ∈ P except P0, add σi=(ni, Ri) with ni=M0(Pi)

to Π. For each t ∈ O(Pi) do,

(i). if O(t) = φ then add a
r
→ λ to Ri else add E/a

r
→ a; 0 to Ri

where E = a∗ and r = W (Pi,
 t)

(ii). for each Pj ∈ O(t) add (i, j) to syn if (i, j) is not in syn.

We can prove the behavioural equivalence of both systems in a

similar way as we proved in Theorem 4.1.

5. SN P SYSTEM FOR SIMPLEX STOP-

AND-WAIT PROTOCOL

We consider the problem of modeling simplex stop-and-wait

protocol system. The system consists of a sender, receiver and

communication channel (buffer). The stop and wait protocol was

very easy to implement and runs very quickly and efficiently. It

solves the problem of congestion, as only one frame is

outstanding at any time, frames can not be lost due to congestion

and the receiver will not be swamped by the sender. It assumes an

error free communication channel. It is easy to see that if a frame

or an acknowledgment gets lost or damaged, a deadlock situation

will occur where neither the sender nor the receiver can advance;

they will be thrown into infinite loops. Specifically, the sender has

three states: “ready to send”, “wait for ack (acknowledgment) and

“ack received”. The receiver also has three states, “ready to

receive”, “packet received” and “ack sent”. The buffer has two

Figure.3: Petri net model for stop-and-wait protocol

Sender Buffer Receiver

2

2

Sender Buffer Receiver

T11

T31

T21

T41

T51

T61

T71

T81

P1

P2

P3 P5

P6

P7

P4

P8

Figure.2: Petri net model for SN P system in Figure.1

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

74

states: “has packet” and “has ack”. In state “ready to send”, the

sender executes the operation “send packet” and moves to state

“wait for ack”; in state “wait for ack”, if the buffer “has ack”, the

sender executes the operation “receive ack”, and moves to “ack

received”, from this state it moves back to state “ready to send”.

Similarly, the receiver is in state “ready to receive” and if the

buffer “has packet”, the receiver executes the operation “receive”,

and moves to state “packet received” and then executes the

operation “send ack” and moves to state “sent ack”. From this

state the receiver goes back to “ready to receive”.

In this protocol, there can only be one outstanding frame at a time

so no sequence numbers are required and the acknowledgment the

receiver sends back to neuron 2, which has two spikes, so it fires

using the rule a
2
→a. The rule a

2
→a is fired only if the sender is

waiting for the ack and buffer has an ack and the receiver again

moves to the state 8. The rules a
2
→a in neuron 2 and 6 provide

synchronisation between sender and receiver.

Now let us consider the Petri net model of the simplex stop-and-

wait protocol system given in [8] and it is reported in Figure.3. If

we construct equivalent Petri net for the SN P system of Figure.1

using the procedure in section 4, we get a Petri net of Figure.2

which is equivalent to Petri net of Figure.3. In other words, we

observe a “direct” correspondence between the SN P systems

representations and the sender is nothing more than an empty

frame, as there is no other possibility than acknowledging the only

frame sent. Another frame will not be sent until this

acknowledgment is received.

In order to model the simplex stop-and-wait protocol, we consider

an SN P system in Figure.1 with 8 neurons labeled in a one-to-one

manner with values in σ1 to σ8. The neurons 1, 2 and 3

respectively represent “ready to send”, “wait for ack

(acknowledgment)” and “ack received” states of the sender.

Similarly neurons 4 and 5 represent “has packet” and “has ack”

states of the buffer respectively. The neurons 6, 7 and 8 denote

respectively the “ready to receive”, “packet received” and “ack

sent” states of the receiver. The operations are represented by

rules which are labeled with unique number I or each neuron σi.

Initially neurons 1 and 6 have one spike each representing that

sender is initially in “ready to send” state and receiver is in “ready

to receive” state. The neurons 1 fire in the first step using the rule

11 : a→a representing the operation ”send packet” and the sender

moves to the state “wait for ack” by sending a spike to neurons 2

and 4. In the next step the neuron 4 fires and sends its spike to

neuron 6. As neuron 6 has two spikes presenting that it is ready to

receive and packet is in the buffer, it fires using its rule 61: a
2
→ a

which represents the “receive packet” operation. The neuron 6

send spikes to neuron 7 which fires using a rule a → a

representing the operation “send ack” and sends spikes to neuron

5 and 8. In the next steps both the neurons fire. The neuron 5

sends its spike Petri nets representation.

Conclusion

In this paper we have proposed an approach to the modeling of the

behaviour of membrane systems through a class of Petri nets. We

gave first a formal translation for a basic class of spiking neural P

systems, and argued that the structure of the concurrent

computations of such SN P systems is faithfully reflected by the

maximal concurrency semantics of the corresponding Petri nets.

Clearly, one could simply use the basic model of Petri nets and

simulate to study the behaviour of spiking neural P systems.

We have also given translation for restricted class of Petri nets

into SN P systems. We have constructed an SN P system for

simplex stop-and-wait protocol and translated it into equivalent

Petri net using the proposed algorithm and observed that it is

equivalent to the standard Petri net representation described in [8].

It would be interesting to consider different variations and normal

forms of SN P systems and find out the suitable class of Petri nets

which could simulate these variations and normal forms.

References

[1] Binder A, Freund R, Oswald M, Vock L, “Extended Spiking

Neural P systems with Excitatory and Inhibitory Astrocytes”,

Proceedings of the 8th WSEAS international conference on

Evolutionary Computing, British Columbia, Canada , June 19-21,

2007.

[2] Fred, Bowden D J, “A Brief Survey and Synthesis of the Roles

of Time in Petri nets”, Mathematical and Computer Modelling,

vol.31, No.10-12, pp.55-68, 2000.

[3] Freund R, Ionescu M, Oswald M, “Extended Spiking Neural P

Systems with Decaying Spikes and-or Total Spiking”, ACME FCT

Workshop, Budapest, 2007.

[4] Ionescu M, Paun Gh, Yokomori T, “Spiking Neural P

Systems”, Fundamenta Informaticae, vol.71, No.2-3, pp.279-308,

2006.

[5] Jenson K, “Coloured Petri nets: Basic Concepts, Analysis,

Methods and Practical Use”, EACTS, Monographs on Theoretical

Computer Science. Springer –Verlag, 1992.

[6] Kleijn J, Koutny M, Rozenberg G “Process Semantics for

Membrane System”, Journal of Automata, Languages and

Combinatorics , vol 11, pp.321-340, 2006.

[7] Kleijn J, Koutny M “A Petri net model for membrane system

with dynamic structure”, Journal of Natural Computing, 2008.

[8] Munina Yusufu, “Petri nets”, http://www.cas.mcmaster.

/sartipi/course/cas707/w07/slides/Mar13-PetriNets-Munina.pdf

[9] Paun Gh, “Computing with Membranes”, Journal of

Computer and System Sciences, Vol.61, pp.108-143, 2000.

[10] Paun A, Paun Gh, “Small Universal Spiking Neural P

Systems”, Journal of Biosystems, Elsevier, Vol.90, pp.48-60,

2007.

http://www.cas.mcmaster/

